If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+10n+19=0
a = 1; b = 10; c = +19;
Δ = b2-4ac
Δ = 102-4·1·19
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{6}}{2*1}=\frac{-10-2\sqrt{6}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{6}}{2*1}=\frac{-10+2\sqrt{6}}{2} $
| 2^x=66 | | 2.1x+5=49/1 | | 4f+5=-11 | | c^2-3c=27+3c | | (180-3x)=(90-8x) | | -3x+3=-2 | | 7u+14=63 | | (n-1)(n+6)=1/(n+5) | | 1.06x=5 | | (n-1)(n+6)=(n+5) | | s(13s+4)=9 | | 4x+3^2=18 | | 7h-13=-55 | | 2x+-4=2x-6 | | -5i+13=28 | | 8x=180-x | | 2(2x+1)=2x+8= | | 6c+54=66 | | (2x-6)=(90-x) | | -2g-14=-32 | | f/3-22=-26 | | 16x^2-57x+46=0 | | Y=8.3x-43 | | -6s+19=-11 | | 3/4x+5=1/3x-3 | | g/3+16=28 | | 2.50+0.15x=1.00+20x | | (5x+6)=2(7x-10) | | 3(x-3)+4x=68 | | 2.50+0.15x=1.000.20x | | (5x+6)=(7x-10)*2 | | (7x-10)=2(5x+6) |